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Abstract: In order to predict the life expectancy of a polymer specimen under fatigue load a new fatigue model, 
based on our laboratory experiments, will be presented in this paper. Our fatigue model provides an 
approximate description of the three life stages of polypropylene specimens without taking into consideration the 
stochastic effects. With an additional stochastic module containing the probabilistic calculations our fatigue 
model will serve as basis for further qualitative analysis.  
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1. INTRODUCTION 

 

Last year we have conducted a series of fatigue experiments on polypropylene specimens in 

the Biomechanical Research Centre of the Budapest University of Technology and 

Economics (BME) [1]. After evaluating the research data we could observe the three stages of 

the damage process, but although several research groups have observed the same stiffness 

retardation no mechanical models were developed previously to describe it. Van Paepegem 

and Degrieck [2] have found that mechanical models can describe the process quantitatively, 

although Shokreigh and Lessard [3] have defined a fatigue criteria for seven different damage 

types. The damage mechanisms are too complex both in geometry and evaluation process. In 

the Department of Polymer Engineering and Textile Technology BME Vas and Rácz [4] have 

studied the effects of the microscopic fiber orientation on the macro-scale material properties. 

The fiber bundle theory is based on the probability assumption that a fibrous structure is built 

of close fiber assemblies called bundles. The original static tensile and bending tests were 

conducted [5] on unidirectionally reinforced composites (UDC). To apply the fiber bundle 

theory on homogenous polymer we suppose that long molecule fibres in the polymer act as 

oriented reinforcing fibres in an UDC, and these polymer molecule chains have the same 

connections between each other like reinforcing fibres in a composite.  



 

2. RESEARCH COURSE 

 

It is well known, that long molecule chains are the building blocks of the polymers. These 

molecule chains are locally straightening by external tensile load, these straightened bundles 

are causing material inhomogenities [4, 5]. These local discontinuities are expanding as 

tensile load increases, which cause the molecule chains to brake. As more and more chains are 

braking crack propagation can be observed first in microscopic, then macroscopic level. This 

crack propagation is the basic cause of the fatigue in the specimen.  

 
Figure 1 – Fiber bundle model of fatigue damage 

 

The straightened and stretched molecule chains oriented at one direction can be treated as 

fibers which form idealized bundles (Figure 1). By modeling the amount of torn fibers in a 

bundle [6, 7, 8] as a function of load cycles we can model the inner structure of the polymer 

and the damage mechanism as well.  

 

3. METHOD USED 

 

To model the strain response of the polymer specimen we have used a generalized Burger’s 

viscoelastic (Figure 2) model. It contains multiple Maxwell filaments simulating the stress-

strain relationships of the molecule chains, and one Kelvin-Voight segment modeling the 

viscoelastic behavior of the connection between the fibers. 

The effect of the sinusoid tensile load (eq. 1) is constantly increasing tensile strain in the 

whole Burger’s model, as well as in the Maxwell bundle [3, 4, 9]. We can assume that there is 

no strain limit on the Kelvin-Voight element, but every Maxwell filament breaks after 

reaching its random strain limit. If we assume that the Maxwell bundle is modeling the 
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reinforcing fibers and the Kelvin-Voight element is to model the adhesion between the matrix 

and the fibres our model can be adopted to an unidirectionally reinforced composite material. 

 
Figure 2 – Analogous mechanical model 

To simulate the damage process we have calculated the strain response of the deterministic 

model (Figure 2) for the stress excitation: 

 tA ϖσσσ sin0 +=  (1) 

  (2) tA ϖϖσσ cos=

  (3) tA ϖϖσσ sin2−=

Hence this is a linear model consisting of one Kelvin-Voight element and N Maxwell 

elements at t=0, the strain response of the whole model can be calculated as sum of the strain 

response of the Maxwell bundle and the Kelvin-Voight element. After defining the boundary 

conditions the differential equations of the Burgers model can be solved deterministically. 

We get the strain of the Kelvin-Voigt element (eq. 5) by solving the stress-strain differential 

equation (eq. 4): 
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By using the stress-strain differential equation (eq. 6), the strain of a single Maxwell fiber (eq. 

7) can be evaluated: 
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The constants of the stress-strain functions can be calculated after defining the boundary 

conditions: 
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The stress of the ith Maxwell fiber is a function of the number of the intact fibers 0<n≤N. (N is 

the number of the Maxwell fibers in the Maxwell bundle before the start of the first cycle.) By 

assuming that the fiber breakage intensity is a much slower process than the periodical time of 

the stress function we can state that the number of the intact fibers in a cycle is arbitrary 

constant, and the stress in single Maxwell fiber can be calculated: 
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We can simplify the deterministic calculations by switching from time based analysis to cycle 
based one. To do so we have to consider the following assumptions: 

1. We can only measure the stress and strain values when the stress function has it’s 

local peak, so in the strain functions (eq. 5 and 7) 1sin ±=tϖ . 

2. In points where 1sin ±=tϖ , 0cos =tϖ and the denominator of the multiplier of the 

cosine factor at least three orders of magnitude greater than the numerator, so the 

cosine  factor can be neglected. 

3. 0kt  is the beginning of the kth cycle, hence 
f
ktk =0 , where f is the frequency of the 

excitation. 

4. The stress function (eq 1) has its local extremas at the end of the first and third quarter 

of the sine wave. 

After applying all the simplifying considerations we can define the local extremas of the 

strain functions of the Kelvin-Voight element and one Maxwell fiber in the kth cycle: 
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With equations 11 and 12 the maximal and minimal strain response of the Burgers model and 

the modulus factor (eq. 13) can be calculated in the kth cycle. By using the modulus factor as 
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damage parameter we can compare the damage mechanism of several different types of 

materials. 
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To determine the values of the parameters of the springs and dumpers we can use the results 

of the static tensile tests. The dumping-ratio of the Maxwell fibers is a function of the  

frequency, while the other parameters are not sensitive to excitation frequency.  

Parameter ME  0E  Mη  0η  

Dimension MPa  MPa  MPas  MPas  

Value 5064 6954.6 f69016475−  2194 

Table 1 – Model parameters 
 
By using the parameters shown in Table 1 we can fit the model’s strain function to static 

tensile tests ( ) with correlation . Hzf 0= 983.02 =R

 

4 RESULTS AND CONCLUSIONS 

 

For  excitation frequency the dumping ratio of the Maxwell fibers is Hzf 10=

69016475− MPasfM 9575==η .  

 
Figure 3 – Model results 
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We can apply the parameters defined above to equations 11 and 12 and by using equation 13 

we can calculate the modulus factor in each cycle to simulate the damage process. If we 

assume 100 intact fibers at t=0, and that the material suffers its final damage at the 3150th 

cycle and damage accumulates linearly, we can plot the modulus factor as a function of cycles 

(Figure 3). By comparing the model results with the measured data we can assert that our 

model can be used to describe the change in amplitude ratio during fatigue test. Although the 

stochastic effects are not considered in this model we are able to make qualitative analysis to 

simulate the material’s response to different excitation functions. By changing the model’s 

parameters we can study different materials or the effects of the manufacturing settings. 

 

5. FURTHER RESEARCH 

 

The damage mechanism can be described fairly well by this deterministic model, but in our 

model the fiber breakage is the function of time or number of cycles which does not represent 

the actual damage process. We have developed an auxiliary stochastic module (the 

supervision is in final phase) which is capable of determining whether a Maxwell fiber is torn 

or just yield. We have studied the fatigue process of non reinforced polypropylene specimens, 

but further laboratory tests are under process on nanoparticle-reinforced, carbon nanotube-

reinforced and basalt fiber reinforced polyamide specimens. 

Our further goal is to build up a knowledge center with data of several different materials and 

material parameters to use it as a design tool in the future. 
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