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Abstract: The theoretic bases of some mathematical models for the sorting processes on vibrating sieves were 

established once the modern calculation equipment appeared. The present paper presents a simplified 

calculation model for vibrating conditions specific to the sieving of pulverized materials on electromagnetic 

sieves.  
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1. ESTABLISHING THE JUMP CONDITIONS 

Let us consider an electromagnetic vibrator, with sieves tilted to angle α  in reference 

to the horizontal line of the place, with the mobile coordinate system axes , solitary with 

the sieve (axis Ox oriented along the sieve) and axes 

yxO1

ηξO  of the fixed coordinate system, as 

shown in figure 1. 

 ξ 

Figure 1. The fixed and mobile reference axes system  
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We shall approach the case of these conditions with a single jump of the grain of 

material at an oscillation period of the perturbing force. Let us further consider types of 

intervals symbolized with “I” for the moments when the material is on the sieve and move 

solitary with it, and symbolized with “II” those moments when the material is in mid-jump on 

the sieve. Thus, for the case in the above figure we shall have the differential equation of the 

movement in interval I as follows: 
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With these notations the above equations becomes: 
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The solution of this equation is: 
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The movement of the sieve after the material lifts at moment 0τ  is given by equation: 
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We again adopt the notations in (1.2), and we obtain the following equation: 
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The solution of the equation is: 
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2. ESTABLISHING THE MATHEMATICAL MODEL  

In order to determine the oscillating movement equations in the specific field of 

pulverized materials sorting, we further determine the constants II I II IA , B , A , B   which appear 
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in relations (4) and (7). Determining the value of these constants was made using the 

nomograms in [2]. The values of the constants extracted from these nomograms are given in 

accordance with the throw coefficient „c” in the table bellow (Table 1).  
Table 1: The values of coefficients  IIBIIAIBIA ,,,

C A1 B1 A2 B2 

2.5 0.042 -0.4 -0.05 -0.168 

2.55 0.05 -0.425 -0.04 -0.173

2.6 0.06 -0.44 -0.035 -0.175

2.65 0.08 -0.45 -0.032 -0.185 

2.7 0.09 -0.465 -0.025 -0.19 
2.75 0.11 -0.475 0 -0.195

2.8 0.12 -0.49 0.03 -0.2 
2.85 0.14 -0.5 0.04 -0.205

2.9 0.143 -0.515 0.042 -0.21 
2.95 0.147 -0.525 0.048 -0.215

3 0.15 -0.545 0.05 -0.22 
3.05 0.154 -0.555 0.053 -0.215

3.1 0.156 -0.558 0.055 -0.215

3.15 0.159 -0.575 0.058 -0.21 
3.2 0.16 -0.585 0.059 -0.21 
3.25 0.162 -0.61 0.06 -0.21 
3.3 0.165 -0.620 0.068 -0.215

 

Using relation  
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(8)  

we will determine the moment when the throw of the grain off the sieve takes place. The left 

side member of the equation represents the movement of the mobile frame with the material-

to-be-sieved on it, and the right side member represents the movement of the mobile frame 

without the material-to-be-sieved on it. Relation (8) represents the space continuity condition 

at the moment the grain is thrown, that is to say that the position of the mobile frame 
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immediately before the grain lifts must coincide with its position immediately after the grain 

lifts.  

Because equation (8) is a transcendental one, it can be solved through the so-called 

method of the “false position” with the help of a proper calculation algorithm. The algorithm 

is designed with the help of the programmer MatLab ([1], [3], [4]).  

The false position method consists in using an equality between two derivative 

functions. In this case we use, as mentioned, relation (8). In this case the difference between 

the two functions results from equation (9), where the unknown is 0τ  - the moment of the 

grain’s jump off the sieve: 
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(9) 
The solution can be determined by linear approximation between two given values of 

equation (9), as in figure 2: 

 
Figure 2. Scheme for exemplifying the false position method  

 

The approximation is done in the interval generated by two values given to the 

functions within the equations [g(τ0_1), g(τ0_2)]. Generating the values is done precisely 

through the programmer, and the root can be determined through linear approximation. After 

each iteration, the domain shrinks so that the new domain determined by the new values of 

[g(τ0_1), g(τ0_2)] contains the root as well. The latter is obtained by replacing g(τ0_1) or g(τ0_2), 

depending on their positive or negative sign with a value calculated with the formula: 
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The calculation programmer for solutions 0τ  of the transcendental equation (9) is 

the following: 

function vibrating_movement  
clc 
%constants 
a1= 0.042; 
b1=-0.4; 
a2=-0.05; 
b2=-0.168; 
k1=0.1; 
km=0.4; 
% solving the equation  
ind=0; 
for c=2.5:0.05:3.3; 
    ind=ind+1; 
    [tauo_fin] = rezolvare_ecuatie_1(a1,k1,km,b1,c,a2,b2); 
    tauo_fin_(ind)=tauo_fin; 
    %afisare rezultate finale   
end 
tauo_fin_ 
disp('FINISH') 
save ('matlabM') 
function [tauo_fin] = rezolvare_ecuatie_1(a1,k1,km,b1,c,a2,b2) 
%valoare presupusa 
tauo_0=pi; 
tauo_1=tauo_0; 
tauo_2=tauo_0; 
% stabilirea lui Z1 si Z2 
contor1=0; 
while 1 
    contor1=contor1+1; 
    tauo_2=tauo_2+0.1*tauo_0; 
    Z1=a1*sin(k1*tauo_1/sqrt(1+km))+b1*cos(k1*tauo_1/sqrt(1+km))-k1^2/(4+4*km-

k1^2)*cos(2*(tauo_1))-(1+km)/c-(a2*sin(k1*tauo_1)+b2*cos(k1*tauo_1)-k1^2/(4-k1^2)*cos(2*(tauo_1))-1/c); 
    Z2=a1*sin(k1*tauo_2/sqrt(1+km))+b1*cos(k1*tauo_2/sqrt(1+km))-

k1^2/(4+4*km+k1^2)*cos(2*(tauo_2))-(1+km)/c-(a2*sin(k1*tauo_2)+b2*cos(k1*tauo_2)-k1^2/(4-
k1^2)*cos(2*(tauo_2))-1/c); 

    if Z1*Z2<0 
        break 
    end 
end 
%metoda falsei poziii 
contor2=0; 
while 1 
    contor2=contor2+1; 
    Z1=a1*sin(k1*tauo_1/sqrt(1+km))+b1*cos(k1*tauo_1/sqrt(1+km))-k1^2/(4+4*km-

k1^2)*cos(2*(tauo_1))-(1+km)/c-(a2*sin(k1*tauo_1)+b2*cos(k1*tauo_1)-k1^2/(4-k1^2)*cos(2*(tauo_1))-1/c); 
    Z2=a1*sin(k1*tauo_2/sqrt(1+km))+b1*cos(k1*tauo_2/sqrt(1+km))-

k1^2/(4+4*km+k1^2)*cos(2*(tauo_2))-(1+km)/c-(a2*sin(k1*tauo_2)+b2*cos(k1*tauo_2)-k1^2/(4-
k1^2)*cos(2*(tauo_2))-1/c); 

    if abs(Z1)<10^-12 
        tauo_s=tauo_1; 
        break 
    end 
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    if abs(Z2)<10^-12 
        tauo_s=tauo_2; 
        break 
    end 
    tauo_s=tauo_1+(tauo_2-tauo_1)*(-Z1/(Z2-Z1)); 
    Zs=a1*sin(k1*tauo_s/sqrt(1+km))+b1*cos(k1*tauo_s/sqrt(1+km))-k1^2/(4+4*km-

k1^2)*cos(2*(tauo_s))-(1+km)/c-(a2*sin(k1*tauo_s)+b2*cos(k1*tauo_s)-k1^2/(4-k1^2)*cos(2*(tauo_s))-1/c); 
    if abs(Zs)<10^-12 
        tauo_s=tauo_s; 
        break 
    end 
    if Zs*Z1>0 
        tauo_1=tauo_s; 
    else 
        tauo_2=tauo_s; 
    end 
end 
%valoarea finala 
tauo_fin=tauo_s; 
 

3. CONCLUSION 

With the help of this programmer we calculated the values of the lift moment of the 

material grain lift for values of the throw coefficient from c=2,5 to c=3,3. For each value 

given to the throw coefficient „c”, the corresponding values of coefficients I I II IIA , B , A , B  

were given. The values thus obtained for the throw moment are provided in the table bellow 

(table 2): 
Table 2. The values of the throw moments of the grain on the sieve. 

c 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 

aruncareτ  26.855 25.608 24.645 23.747 23.186 23.008 23.404 22.738 

Table 2 (continuation) 

c 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 

aruncareτ  22.484 22.416 22.143 21.789 21.676 21.360 21.220 20.969 21.045 
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