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Abstract: The mathematical modelling of formation, stability and damage of self-supporting stagnant arch like 

structures inside bulk material discussed in this paper. Some experimental methods will also be presented, for 

the measurement of material properties used in the mathematical model. We present an algorithm for the deter-

mination of critical outlet size for a simplified model silo. 
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 1. INTRODUCTION 

Arcing occurs mostly during the discharge of silos, but pressure acting on under-

ground structures is also influenced by arching, and smaller than the weight of the overbur-

den. Earth pressure applied on retaining wall sometimes also smaller than the theoretical 

value, and this phenomena are also caused by the arching action. The arch formation inside 

silos can change the wall pressure distribution in a large scale, and sometimes the whole silo 

collapses because of this change in pressure distribution. The outflow of granular materials 

from containers is also considered to a sequence of formation and collapse of arches. The 

evaluation of stresses in granular assemblies without taking the arching action into considera-

tion, always gives false, inaccurate results. 

 

 2. MATHEMATICAL MODEL 

The classical method, used for the evaluation of stresses within the arch uses two theo-

retical solutions [1]. The first one evaluates the stresses that consolidate the granular material 

and give rise to its strength, the second one analyzes the stresses that act in an arch regarded 

as a structural member. The evaluation of stresses within these speculative arches is based on 



assumptions on the shape of these arches. The classical definition of arching follows from 

these aspects: “arching refers to spontaneous formation of an arch like supported stagnant 

mass of bulk material [1] “, which is capable of bearing the pressure originating from the 

mass above it.  

For the mathematical model, first we need to determine the stresses inside our model 

silo. The model silo was a simple rectangle shaped container, with variable outlet size on its 

bottom. For the determination of stresses acting inside the granular mass, we used a used lin-

ear elastic, isotropic, homogenous continuum material model for the granular assembly. Our 

assumptions were: 

1. The granular material fills out continuously the container, and its material properties 

are independent of space coordinates, time and orientation. 

2. We assumed, that the connection between the stress and the deformation tensor is lin-

ear in every point of our model silo. 

3. The load originated only from material self weight. 

4. The wall-material friction can be neglected. 

5. The rigidity of the silo side wall supposed to be infinite. 

6. We assumed plain strain state. 

Our aim was to determine the critical outlet size of this model silo. Critical outlet size means a 

border-line case, namely if the outlet size is bigger than this critical values, stable arches ca 

not be taken form. 

 

 

 

Fig. 1: Triaxial apparatus Fig. 2: Triaxial compression 
 

 

 



 2.1. Material properties and failure criteria  

 

For the determination of stresses, the specimen’s Young modulus (E) and the Pois-

son’s ratio ( )ν  had to be determine. The measurement process of these material properties 

described in [2]. We needed an other material property for the description of the collapse of 

the arch. This is the critical stress belonging to biaxial stress state. The arch collapses, when 

on its free boundary – where the material is in biaxial stress state – the compressive stress 

exceeds the critical value Kσ .  

We used a special triaxial apparatus (fig. 2) for the determination of material proper-

ties. The description of this apparatus can be found in [3]. To measure the critical stress be-

longing to biaxial stress state, we applied two different kind of load on the granular material. 

In the first step we applied a triaxial pre-compression on the specimen. Then we removed one 

of the lateral springs (fig. 3), and increased the vertical load until the collapse of the specimen. 

With the removal of one of the lateral springs, we realized the biaxial stress state, needed for 

the measurement of the critical stress. 

Fig 3: The finite element model 

Knowing the material properties, the stresses arising inside the model silo can be de-

termined using finite element method. The finite element model of silo is in fig 3. After the 

determination of stresses inside the model 

silo, we have to analyze the process of 

arch formation. For this, we have to 

determine the failure criterions “con-

trolling” the arch formation and collapse 

process. The failure criterion for arch 

formation is simple for this rectangle 

shaped model silo: granular assemblies 

are unable to resist tension. It is also sim-

ple to formulate this conditions in 

mathematical form. After the evaluation 

of stresses, we have to compute the 

eigenvalues of the stress tensor in every 

point of the granular material. These eigenvalues are the so called principal stresses. If the 

biggest principal stress is positive, than in that point of the material tension occurs, and the 



continuity of the material fails. The material is falling out from these point through the open 

outlet. 

The stability and collapse of the arches depends on two different failure conditions. 

The firs failure condition occurs, when on the materials free boundary – where the material is 

in biaxial stress state – the compressive stress exceeds the critical value Kσ . The mathemati-

cal formulation of this failure criterion is also in connection with the principal stress values. If 

the third (smallest, and in our case negative) principal stress value is smaller then the critical 

Kσ , in any points of the granular assembly’s boundaries, than the failure of the arch is due to 

happen. The value of this critical stress depends on the magnitude of pre-compressing 

stresses. The second failure criterion is about the shear stresses acting inside the granular ma-

terial. The value of the shear stresses inside granular materials cannot be higher than a critical 

value. The critical shear stress value is – usually considered to be linear – function of the fric-

tion angle and cohesion of the granular material.  

Using this failure conditions, it is possible to create an algorithm for the numerical 

simulation of the arching process (fig 4). 

2.2. The algorithm 

1. First we open the outlet to an initial size. 

2. The determination of stresses inside the granular material comes next. Using finite 

element method, this is possible; numerically. 

3. Knowing the stresses, the eigenvalues of stress tensors must be computed. 

4. Using the biggest eigenvalues, the failure criterion for arch formation must be applied. 

5. After the removal of material elements, where the first failure criterion prevailed, the 

domain, where the stresses were evaluated changed, so the stresses must be evaluated 

again. 

6. Knowing the new stresses, the eigenvalues must be computed again, and the failure 

condition for arch formation must be applied. This goes until there are no more points 

inside the material, where tension occurs. 

7. When there is no more tension, the two failure criterion for arch collapse must be 

taken into account. If none of them comes to be true, then a stable arch formed. This 

arch belongs to the outlet size adjusted in step 1. 

8. The outlet size can be enlarged, and then the whole process starts again from step 2. 

9. The algorithm runs until one of the arch failure criterions comes to be true. 

10. When the arch collapse criterion occurs, the critical outlet size is determined. 



 

Define the domain  and the boundary 
conditions. Evaluate the stresses: 
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Fig 4.: The algorithm for determination of critical outlet size 

 

3. RESULTS AND FURHTER RESEARCH 

An iterative method for modelling the arching action in granular assemblies was de-

veloped. This method is different, and more efficient than any methods existing in the litera-

ture for determination of critical outlet size in silos. Our further research will include the 

conic shaped containers, where the possible sliding of the material at the container wall must 

be also taken into account. 
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