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Abstract: The study below deals with the two degree-of-freedom connected drives having constant 

transmission ratio. These connected systems consist of two differential gear drives and two one degree-of-freedom 

gear drives. We define the necessary kinematic- and inner ratios, than we determine the possible powerflows of the 

connected system. The study shows expressively the evolution of the inner motion state which meets the moment- and 

power equlibrium conditions. In this state the connected planetary gear drive works with optimal efficiency.  

Key words:  differential gear drive, connected drive, self regulation, two degree-of-freedom system 

 

The study examines the working conditions of two degree-of-freedom connected drives 

having constant transmission ratio. These connected systems consist of two differential gear 

drives and two one degree-of-freedom gear drives. Using the kinematic equations we define the 

necessary kinematic- and inner ratios, then – based on the kinematic- and dynamic relations of 

the differential drive – we determine the possible powerflows of the connected system. The study 

shows expressively the forming of the inner motion state which meets the moment- and power 

equlibrium conditions. In this state the connected planetary gear drive having constant kinematic 

transmission ratio works with optimal efficiency.  

 

1. KINEMATIC RELATIONS 
 
Let’s examine the connected system, seen on Fig.1., in which the base elements of the D1 

and D2 are denoted by p1,q1,r1 and p2,q2,r2 (p,q toothed base elements, r arm). The elements r1,p2 

are joined by H1 drive, and the elements q1,q2 are joined by H2 drive. Let’s assume, that the input 

element of the system is 0≡p1, while the output element is ∞≡r2. Since D1 and D2 differential 



drives have s1=s2=2 degree-of-freedom before coupling, and after coupling the system has two 

connected  (p2r1 and q1q2) base elements (k=2), the connected system has sk=s1+s2-k=2+2-2=2 

degree-of-freedom as well. 

 
 

 

 

 

Fig.1. 
 
Let’s choose the inner ratios of the D1 and D2 differential drives ip1q1=ip2q2=-1, and the 

kinematic transmission ratio of the connected drive k0∞=kp1r2=-2. On the basis of inner ratios and 

denoting the angular velocities of base elements by ω (e.g. ωp1 is the angular velocity of p1 ) we 

can write:    

ωp1 +ωq1 -2ωr1 =0;     (1) 

ωp2 +ωq2 -2ωr2 =0.     (2) 

 
From these, by kH1=ωp2/ωr1=-2 ratio of H1 drive and kH2=ωq2/ωq1=1 ratio of H2 drive, it can be 

derived, that the connected system has – independently of the state of motion – k0∞=-2 constant 

transmission ratio. 

 Since the powerflows are determined by kp1r1; ip1q1 and kp2r2; ip2q2 inner ratios [1], the 

ranges of kp1r1;kp2r2 and their relation are necessary for the examination of the powerflows and 

working possibilities of the connected system. The relation kp1r1=f(kp2r2) can be derived easily: 

 
 k0∞ kH1=(-2)(-2)=ωp1/ωr2*ωp2/ωr1= kp1r1*kp2r2, 

consequently: 

kp1r1=4/kp2r2       (3) 
 

2. POSSIBLE POWERFLOWS 
 

According to [1] by ip1q1=-1 in the field of 0<kp1r1<1 theoretically the r1→p1q1 and 

p1q1→r1 powerflows are possible. But here only the p1q1→r1 powerflow can be realized since p1 

is input element. So in this range the connected system works as shown on Fig.2.. It can be seen, 



that in this case the D2 differential’s powerflow can be – assuming that r2≡∞ output element – 

only p2→q2r2. According to (3) it belongs to 4<kp2r2<∞. We note that the powerflow of D2 is 

p2→q2r2 according to [1] as well. 

 

 

 

 

Fig.2.    Fig.3.    Fig.4. 
 

In the field of 1<kp1r1<2 the powerflow is also p1q1→r1 [1], so Fig.2. shows the 

connected system’s powerflow also for this case. The transmission ratio range of D2 differential 

drive is 2<kp2r2<4 according to (3). In case of kp1r1= kp2r2=2 kinematic ratio the q1≡q2 central 

elements are stationary, so the q1→q2 powerflow ceases, and closed powerflow doesn’t circulate 

in the system. 

In the field of 2<kp1r1<4 the powerflow can be p1→q1r1 and p2q2→r2, and 1<kp2r2<2 

(Fig.3.). 

In the field of 4<kp1r1<+∞ the powerflow is also p1→q1r1 and p2q2→r2, and 0<kp2r2<1. In 

case of kp2r2=1 limit value the D2 differential drive works as a clutch. 

 Finally, in case of -∞<kp1r1<0 the powerflow is p1r1→q1 and the transmission ratio of D2 

is -∞<kp2r2<0, to which belongs q2→p2r2 powerflow. We note, that when kp1r1=-∞ the D1 

differential drive works as a simple drive and because of ωp2=0 the p2→r1 powerflow stops 

(Fig.4.).   

  On Fig.2-4. it can be seen, that – according to the change in the state of motion – from a 

circulating powerflow (Fig.2.) a branched- (Fig.3.) then a reverse circulating powerflow can 

evolve (Fig.4.).   

 

3. DYNAMIC RELATIONS 
 

The question arises, that which state of motion will stay up by stable running. This 

question can be answered after the analysis of the moment-relations. The moments acting on base 

elements (M) can be determined, if the η0 efficiency (efficiency when the arm is fixed) of D1 and 



D2 differential drives, the w1 and w2 indexes (determine the direction of powerflow), and ηH1 and 

ηH2 efficiencies of H1 and H2 drives are known [1],[2]. For the sake of simplicity let’s assume, 

that M0≡Mp1=1Nm, η0=ηH1=0.98 and ηH2=0 (since q1 and q2 are connected elements).  

The determination of the moments acting on base elements is shown for the transmission 

ratio range of 0<kp1r1<1, 4<kp2r2<∞. The valid powerflow can be seen on Fig.2.. In this case 

w1=-1, w2=1 [1], so in D1 drive: 
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moments are necessary to get equilibrium. But with these relations the Mq1 and Mq2 acting on 

q1q2≡q connected element are not equal. The difference Mdq=Mq1+Mq2=1.020408-

0.9702=0.050508Nm generates a moment which decelerate the ωq of element q (together with 

ωp2 and ωr1) until clutch state of D1 differential (ωp1=ωq=ωr1=1). We mention – without detailing 

–, that in 0<ωq<1 section an Mdq=0.029204Nm decelerating moment works. Due to this moment 

the element q stops, and than accelerates in the opposite direction until reaching ωp2=ωr2=ωq=-

0.5 clutch state. If ωq<-0.5 , an Mdq=-0.1Nm moment works, and because of this ωq>>-0.5. So 

the system set in kp2r2=1 and kp1r1=4 ratio values by self-regulation, so D2 works in clutch state 

while D1 works as a differential gear drive with kp1r1=4. 

 

4. EFFICIENCY 
 

The efficiency of the connected planetary gear drive can be calculated on the basis of 

loss-analysis. Let’s choose the angular velocity of input element ω0≡ωp1=1/s, and its moment 

M0≡Mp1=1Nm, consequently the input power P0=1W. 

The efficiency of D1 differential [1]: 
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The loss power of D1 differential: 
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From kp1r1=4 kinematic ratio in case of  ωp1=1/s the angular velocity of r1 is ωr1=0.25/s, and 

the moment on r1 arm is:  

Nm,MηiM p
w

qpr 98,11)19801()1( 1
10111

1 −=⋅−⋅−=⋅−⋅= . 

So the loss power in H1 drive: 
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Since D2 differential drive works in clutch state, its loss is PV2=0. So the total power loss of the 

connected system: 

WPPP VHVV 0249,00099,0015,011 −=−−=+=∑ . 

And the efficiency of the system is (considering only the tooth losses):   

9751,0
1
0249,01

0

0
0 =

−
=

−
= ∑

∞ P
PP

η V , 

to which belongs 

NmM
r

r 9502,1
5,0

9751,0

2

0
2 =

−
−

=
−

= ∞

ω
η  

moment. 
 

5. STRUCTURAL CONSTRUCTION 
 

The kinematic sketch of the connected drive can be seen on Fig.5., when bevel gear 

differential drives are used, and the arrangement is not coaxial. Fig.6. shows the structure in case 

of coaxial arrangement. The kinematic sketch when the differential drive consists of cylindrical 

gears and the arrangement is coaxial can be seen on Fig.7.. 

 

 

 

 

 

 

 

         Fig.5.      Fig.6. 



In Fig.6-7. solutions the H2 drive is missing, because its kq1q2=1 kinematic transmission ratio is 

assured by direct junction of q1q2 base elements. 

 

 

       

 

 

 

Fig.7. 
 
 

6. CONCLUSION 
 
 The examination of connected differential gear drives reveals that connected systems with 

arbitrary constant transmission ratio can be designed by proper selection of inner ratios of D1, D2 

and kinematic transmission ratios of H1, H2 one degree-of-freedom drives. Main property of these 

systems is that their inner motion set by self regulation in such a state – from the infinite number 

of possible states –, wich has the less power loss, so they work with optimal efficiency. It’s 

necessary to mention, that by proper selection of various parameters the two degree-of-freedom 

connected planetary gear drives can be used as self-regulating continuously variable drives. 
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