5th INTERNATIONAL MEETING OF THE CARPATHIAN REGION SPECIALISTS IN THE FIELD OF GEARS

ANALYZE OF THE PRINCIPALS PARAMETERS TO THE DISC CUTTER

VASILE ȚIPLEA NORTH UNIVERSITY OF BAIA MARE, ROMÂNIA

Abstract: Specialized paper [1] [2] present the geometry of the pinion cutter as a selfstanding tool. Other authors [3] and [4] simplify the approach to the pinion cutter arguing that: "Although all cutting tools namely, cutter, drill, drift, broach, file or mill, have completely different shapes, they still have common parts". Keywords: Geometry fellow tool cutting, sharpening.

The geometry of the pinion cutter cannot be dealt with on an individual basis [3]. The paper develops an analogy between the "geometry of the basic tools", fig.1 and the variable geometry of the pinion cutter's tooth, fig.2.

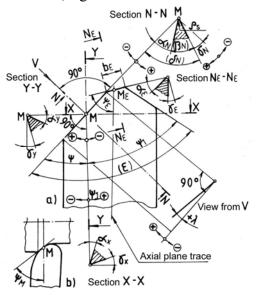


Fig. 1 Multi-edged basic tool geometry:

a.-rectilinear cutter; b.-curvilinear cutter. $\gamma = \gamma_N - \text{main}$ disengagement angle (constructive); $\alpha = \alpha_N - \text{main}$ setting angle (constructive); $\gamma_v - \text{main}$ disengagement rear angle; $\alpha_v - \text{main}$ setting rear angle; $\gamma_x - \text{main}$ lateral disengagement angle; $\alpha_x - \text{main}$ lateral setting angle; $\lambda - \text{main}$ edge inclination angle; $\psi - \text{main}$ cutting facet angle; $\psi_1 - \text{secondary}$ cutting facet angle; $\epsilon - \text{tool}$ vertex angle: $\epsilon = (\psi + \psi_1)$; $\psi_{\epsilon} - \text{cutting}$ facet transition angle (constructive); $b_{\epsilon} - \text{transition}$ edge width; $\rho_{\beta} - \text{main}$ sharpening radius; $\delta = \delta_N - \text{main}$ cutting angle.

Analogy between various tools. Figure 1 presents the geometry of the multi-edged basic tool while figure 2 we have the geometry of the pinion cutter's tooth.

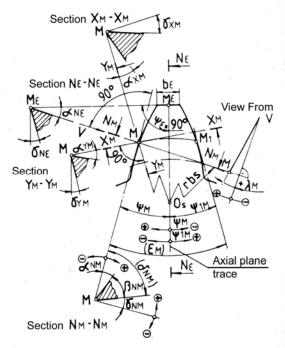


Fig.2 Variable geometry of the pinion cutter's tooth. $\gamma_{M} \equiv \gamma_{N_{M}}$ – main disengagement angle (constructive) in point M; $\alpha_{N_{M}}$ – main setting angle (constructive) in point M; $\gamma_{Y_{M}}$ – main disengagement rear angle in point M; $\alpha_{Y_{M}}$ – main setting rear angle in point M; $\gamma_{X_{M}}$ – main lateral disengagement angle in point M;

 $\alpha_{M=}\alpha_{X_{M}}$ – main lateral setting angle in point M; λ_{M} – main edge inclination angle - in punctul M; ψ_{M} – main cutting facet angle - in point M;

 $\psi_{1_{M}}$ - secondary cutting facet angle - in point M_{1} ; ε_{M} - tool vertex angle: $\varepsilon_{M} = (\psi_{M} + \psi_{1_{M}})$, in points M and M_{1} ; ψ_{ϵ} - cutting facet transition angle (constructive - in point M); b_{ϵ} transition edge width; ρ_{β} - main sharpening radius - in point M; $\beta_{M} = \beta_{N_{M}}$ - main sharpening angle - in point M; $\gamma_{v} \equiv \gamma_{\epsilon} \equiv \gamma_{N_{\varepsilon}}$ - transition edge disengagement in point M_{ϵ} ; α_{v} $\equiv \alpha_{\epsilon} \equiv \alpha_{N_{c}}$ - transition edge setting angle in point M_{ϵ} ;

CONCLUSIONS.

There is a unity of the cutting process in the facing, millig or planning processes. Therefore, the need ist o develop a unitary theory of cutting tools combined into an abstract tool is increasingly felt.

REFERENCES

1. **Hartman, H**. Verzanvesfaren und neue Verzahnmaschinen für zylindrische Verzahnungen. Maschinenbautechik, nr.4 1962;

2. Henriot, G. Traité Theorique et pratique des engrenages. Paris, Dunod, 1968;

3. **Țiplea, V**. *Pinion cutter mortising of cilinder gear wheel*, U.T.Press, Cluj-Napoca, 2002, pg.46

4. Bouillet, I.P. La Coupe des Métaux, Paris, Dunod, 1964.