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Abstract: The paper proposes the application of the optimising procedure to multiaxial rainflow analyse of non-
proportional loading of randomly excited structures. Cumulative damage is calculated by Corten-Dolan 
hypothesis. Applied methods are implemented to finite element solver FEM_MRFA created in MATLAB. The 
numerical application and short comparison is presented by finite element analyse of the randomly oscillated 
frame structure of the track maintenance machine DELTA. 
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 1. INTRODUCTION 
  
It’s generally problematic to calculate the fatigue life for machines parts where a dynamic 
load results are considerable changed in the principal stresses. This fact is any topical 
problems in vehicles dynamics. By FE analyse we can obtain generally six components of the 
stress-time function (multiaxial stress) but it is very complicated to define the computational 
hypothesis for equivalent uniaxial load spectrum. In this case, the rainflow analysis for 
random stresses, known in classic uniaxial form as von Mises or Tresca hypotheses, is 
impossible.   

The goal is to propose the optimising approach application to estimate the high-cycle 
fatigue damage for multiaxial stresses caused by random vibration, from finite element 
analyse.  

  2. MULTIAXIAL RAINFLOW ANALYSIS 
This problem can be found in many areas of technology, however, such as in a bodywork 
structure, axle components, crankshafts, rotary blades for wind power station etc. Assumed 
the high number of criteria existing in the literature, we’ll consider only following techniques: 

o general technique – version 1, 
o general technique – version 2 and, 
o critical plane approach. 

General technique – version 1 
 Let define the multiaxial rainflow counting [4], [5]: Let σ(t)=[σx,σy ,...]T be a random n-
dimensional vector, the n signals may be thought of either as load components of external 
forces acting on the structure or as components of the local stress or strain tensor at a given 
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point. The fundamental idea is to count raniflow cycles on all linear combinations σMRF(t) of 
the random vector components of the form: 
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Practically, when the stress state is biaxial, the stress components can by written under the 
form of three dimension vector σ = [σx, σy, τxy]T. A set of linear combinations  
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can be chosen for values of ci such as  thus defining a sphere [2]. The goal 
is to find extreme value of the estimated damage or life for vector c.  
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General technique – version 2 
 The finding process of the vector c components is effective, if the number of 
components ci is minimal. Hence, we can modify the general (six components) stress problem 
(1) to principal stresses problem (only three components) by relation 

)()()()( 332211 tctctctMRF σσσσ ⋅+⋅+⋅= ,                               (3) 
where σ1  ≥ σ2  ≥ σ3 are principal stresses. 

Critical plane approach 
 For such multiaxial stress fields, the fatigue phenomenon is generally regarded as 
being governed by a combination of the shear and normal stress acting on critical plane. 
Hence, let define  

      ,                                                          (4) cTc ⋅⋅= T
MRF t )(σ

where T is the classic stress tensor, and c is the vector of the direction cosines of the critical 
plane, 
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In this case the “damage equivalent stress function” is defined by normal stress in critical 
plane. The critical plane is possible to locate by numerical (optimising) way or to define at the 
beginning of the computing. 

Considering other way, we can write the Dang Van criterion [1] as follows  
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where σh,max is hydrostatic stress, σ1,a and σ3,a are the largest and smallest amplitudes 
of principal values of the stress tensor, b is a material constant. Dang Van assumes critical 
plane in plane of maximum shear stress. 
 

3. IMPLEMENTATION OF OPTIMISING TECHNIQUES TO RAINFLOW 
ANALYSIS AND FATIGUE LIFE PREDICTION   

 
Finite element analysis is the traditional numerical technique for the stress estimation of the 
oscillating mechanical structures. We shall assume 

o random excitation, 
o geometrically  and physically linear FE model, 
o Miner’s linear law for cumulative damage.  
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Subject to the normality condition of c, the optimising variables vector is normalised by 
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where t is time interval of realisation, D is cumulative damage, T is fatigue life in hours, Ni is 
number of cycles to failure, ni is number of cycles at one particular stress level. By rainflow 
decomposition of σMRF (t,c) , we obtain Ni and ni. Considering Corten-Dolan modification of 
Wohler curve (Fig. 1) [6], we can write 
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where σmi, σAi  are mean stress and 
stress amplitude after rainflow 
decomposition of σMRF(t,c), Rm is 
tensile strength.  Parameters NA, 
σAmax, NC, σC, N0, Ni, σAi are 
presented on Fig. 1. 
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Fig. 1 Wohler σ-N curve 
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 The searching process is 
realised by computational program 
FEM_MRFA created in MATLAB. 
Program contains stress analyse by 
FEM and optimising procedure by 
MATLAB function FMINS for 
chosen element or node. 
 
 
 
 
 4. FE APPLICATION 
 
Assuming finite element analyse, we can 
usually simulate the vehicles frames by 
3D beam or shell finite elements.  

                                                                σx (y,z) 

                                    T      x 

Fig.2 Distribution of the stress σx in a beam 

 For 3D beams is the uniaxial stress 
analyse realised in marginal points of the cross 
section (Fig. 2) by relationship    
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where y, z are the centroidal principal axes, 
A is the cross section area, Iy, Iz are centroidal 
principal moments of inertia for the elements 
section, Nx ,My , Mz are internal axial force and 
bending moments. Considering the introduced 
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facts, we can to observe the inapplicability of the multiaxial technique for this finite element. 
 On the other hand the application of the shell finite elements to construction of the 
computational model is defined as a plane stress problem. The stress computing is realised by 
superposition of the membrane and bending stress components 
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where t is the thickness of the element, Fxx, Fyy, Fxy, Mxx, Myy, Mxy are componets of internal 
forces and moments per unit width. The stress components on top and bottom surface (Fig. 3) 
are following 

bxymxyxybyymyyyybxxmxxxx σσσσσσσσσ +=+=+=       ,      , .                               (8c) 
It’s mean that the “damage equivalent stress” is 

 )()()()( 321 tctctct xyyyxxMRF σσσσ ⋅+⋅+⋅=                                     (9) 
or by using of the principal stresses  

)()()( 2211 tctctMRF σσσ ⋅+⋅= .                                              (10) 
The last relationship is very effective subject to minimum number of the parameters ci. 
 

     membrane                            bending                                  final  
stress component               stress component                          stress 

Fig. 3 

 
                                     +                                          = 

 
Fatigue life estimation of the track maintenance machine DELTA 

 Concrete application of the introduced theory is realised on the finite element model of 
the track maintenance machine DELTA (Fig. 4). Let’s consider the computational parameters: 

o Young’s modulus of elasticity E=2.1011Pa,  
o Poisson ratio    μ=0,3, 
o Density    ρ=7800kg/m3 , 
o Elastic limit    Rk=σy=247 MPa, 
o Tensile strength    Rm= 370 MPa , 
o Point of Wohler curve  NA=104 cycles, σAmax=217 MPa, 
o Fatigue limit    σC=68,7 MPa, 
o Constant    k=0,9, 
o Exponent of Woher’s curve  m=5,2, 
o Time interval     t∈<0,500> [sec], 
o Time increment   Δt=0,05 [sec] 
o Vehicle speed    v=100 [km.h-1]. 
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Fig.4 Computational model of the machine DELTA with identification of 
the critical point subject to cumulative damage 

uL(t-L/v) 

uR(t) 

uL(t) 

uR(t-L/v) 

Damage critical point 

The 
functions uL(t) and uR(t) are the zero-mean random functions of kinematical excitation 
in vertical direction, which we know from measurement on real railway line. The power 
spectral density of uL(t) and uR(t) is presented on figure 5. 

Since the rainflow analyse 
is possible to realise in only time 
domain, we’ll use the Monte Carlo 
simulation of the functions uL(t) 
and uR(t) (Fig. 6). 

 

With the advent of recent 
computational facilities, this 
method becomes ever more 
attractive. The results are 
determined from the series of 
numerical analyses (approximately 
100-1000 realisations of random 
excitation). It is recommended to 
generate about 5000-10000 random 
values of excitation function 
(defined by power spectral density 
Sff(ω)) for each realisation. 
 Simu input 
stationary Gaussian process u(t) with zero mean can be formulated by 
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where ϕk is uniformly distributed random number (0 ≤ ϕk ≤ 2.π), u(t) is zero mean stationary 
process with power spectral density Suu(ω). The generated time behaviours of the uL(t) and 
uR(t) are shown in figure 6. 

The finite element model contains 632 shell, 32 beam and 8 spring-damper elements. 
The displacements were computed in 651 nodes. The damage and fatigue life prediction was 
calculated and compared for selected – critical nodes (The best critical node was node 75). 
The chosen results for critical point are presented in Table 1. 

Table 1 Optimising variables for multiaxial fatigue analysis in critical point (node 75)   
  Optimising 

variables Initial value Final value Damage D Fatigue life T [hour]
c1 1 0,69032 1,085.10-6 63991 0 c2 0,72351 

The time behaviour of the principal stresses in critical point is shown in figure 7 and the 
principal stresses correlation is presented on figure 8. 

Fig. 6 Generated time behaviors of the vertical random 
axlebox displacements uL (t) and uR (t)  

Fig. 7 Time behaviors of principal stresses σB1B (t) and σB2 B (t) in damage critical 
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 Fig. 8 Non-proportionality of principal stresses in critical point 
 
 

5. CONCLUSION  
 
This paper discusses multiaxial approach for the estimation of fatigue damage or fatigue life 
of the shell structural models. It is introduced the chosen ways of the multiaxial rainflow 
analyse of random stress tensor. The suggested and applied approach is based on equation (1) 
and leads to an optimising problem of a few (minimal two) variables ci (i=2,…6). The 
application of multiaxial rainflow analyse is presented by the cumulative damage calculation 
of the randomly excited frame of the track maintenance machine DELTA. 
 
 

6. REFERENCES 
 
[1] Balda M.: Prediction of Damage Cumulation in Vibrating Rotors, Proc. of IFToMM 

Fifth International Conference on Rotor Dynamics, Darmstadt, 1998. 
 
[2] Dressler K. - Köttgen V. B. - Kötzle H.: Tools for fatigue evaluation of non-

proportional loading, In proceedings of Fatigue Design’95, Helsinky, Finland 1995.  
 
[3] Papuga J. - Růžička M.: Uniaxiální a multiaxiální metódy řešení životnosti y hlediska 

algoritmizace, 17. konferencia Výpočtová mechanika 2001, Nečtiny 2001, (269-278). 
 
[4] Pitoiset X.- Preumont A. - Kernilis A.: Tools for a Multiaxial Fatigue Analysis of 

Structures Submitted to Random Vibrations, Proceedings European Conference on 

 309



Spacecraft Structures Materials and Mechanical Testing, Braunschweig, Germany, 
1998.  

 
[5] Preumont A. - Piéfort V.: Predicting random high cycle fatigue life with finite elements, 

Lournal of Vibration and Acoustics, 116, 1994, (245-248). 
 
[6] Trebuňa F. - Bigoš P.: Intenzifikácia technickej spôsobilosti ťažkých nosných 

konštrukcií, VIENALA, Košice 1998. 

 310


	General technique – version 2
	Table 1 Optimising variables for multiaxial fatigue analysis in critical point (node 75)  
	5. CONCLUSION 

